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Abstract.
Background: Numerous studies have shown that the complement system plays an important role in Alzheimer’s disease (AD).
However, whether complement 4 (C4) protein in cerebrospinal fluid (CSF) was associated with AD pathology, especially in
the early stage of AD, is still unclear.
Objective: We aimed to explore the association of CSF C4 with AD pathology and cognition in the preclinical AD.
Methods: The study included a total of 287 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. Based on the A/T scheme, they were divided into four groups to access the changes of CSF C4 in the preclinical
AD. Linear regression models were used to test the associations between CSF C4 and AD core biomarkers, namely A�42,
P-tau, and T-tau.
Results: The level of CSF C4 decreased in the A + T- group compared with the A-T- group (p = 0.04) and it increased in
the A-T+ group compared to the A + T- group (p = 0.01). In pooled samples, C4 was significantly associated with AD core
biomarkers (all p < 0.05), but only in the A + group after stratification according to the A/T scheme. Furthermore, CSF C4
levels at baseline were associated with longitudinal cognitive changes.
Conclusions: Our results showed that CSF C4 levels changed dynamically in the preclinical AD, and that the responses of
CSF C4 to brain A� pathology, tau pathology and neurodegeneration were found only in the presence of amyloid plaques,
both of which indicates the complex link between C4 and AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a common neu-
rodegenerative disease characterized by pathological
hallmarks including amyloid-� (A�) protein deposits
and neurofibrillary tangles composed of hyper-
phosphorylated tau (p-tau) proteins, followed by
prototypical clinical impairment [1]. Aberrant
synapse function and aberrant elimination is a key
pathomechanism for cognitive impairment in AD [2–
5]. The complement system, an integral part of the
innate immune system, can rapidly recognize and
eliminate pathogens and cellular debris in the brain,
which play a major role in the normal function of
synapse. Lots of studies demonstrated that the com-
plement system was also involved in physiology and
pathology of AD. As shown in AD mouse mod-
els, complement and microglia induced the loss of
synapses in the early stage of AD [6–8]. Furthermore,
activated complement products, a driver of neuroin-
flammation, is involved in recruiting and activating
microglia at sites of fibrillar A� deposition in AD [9,
10].

C4 protein is a critical component of the clas-
sical complement cascade, functionally involved in
synapse clearance during developmental maturation
of a neuronal circuit [11]. There are two isoforms
of complement C4, namely C4A and C4B. C4A
and C4B have different hemolytic activities, cova-
lent affinities for antigens and immune complexes,
although they differ by only four amino acids [12].
These differences infer that C4A may be func-
tionally advantageous in ensuring antibody-antigen
deposition resolution, whereas C4B has a greater
role in propagating the activation pathway leading
to membrane attack complex formation when for-
eign antigens are attacked [11–15]. Furthermore,
previous studies have reported the associations of
C4 gene expression with multiple neurodegenera-
tive disorders [16, 17]. Massively parallel reporter
assays showed that C4A was a risk gene in AD
[18] and a previous analysis of UK Biobank data
demonstrated that C4A was associated with cogni-
tive performance and brain atrophy [19]. However,
the role of C4 protein in the pathogenesis of AD is
poorly understood, particularly in the early stages of
the disease.

In this study, we investigated CSF C4 levels in
different pathological stages of AD and tested the
associations of CSF C4 with A� and tau pathologies.
We also explored whether C4 mediated the effects
of A� pathology on tau pathology and the predictive

values of C4 in cognitive decline. To achieve these
aims, the biomarker-based A/T classification system,
which has been developed and refined by the National
Institute on Aging and the Alzheimer’s Association
(NIA-AA), was used to explore these associations
since changes in CSF A�42 and P-tau levels represent
the pathological progression of AD. This classifica-
tion system consists of two biomarker dimensions
including the assessment of A� pathology (A) and
tau pathology (T) and divided the stage of preclinical
AD into 3 successive stages. All participants were
non-demented individuals, as non-dementia repre-
sents the early stages of AD, which allowed us to
study the association between the complement path-
way and AD pathology at a very early stage of
AD.

METHODS

Subjects

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database is a research project investigating
the relationships between clinical, cognitive, imag-
ing, genetic, and biochemical biomarker features
across the spectrum of AD in people with demen-
tia, those with mild cognitive impairment (MCI), and
controls at risk of developing cognitive decline and
dementia [20]. Exclusion criteria of ADNI database
included inability to speak English or Spanish,
inadequate visual and auditory capacities for neu-
ropsychologic assessment, central nervous system
infection, recent head trauma, active substance abuse,
medical contraindication for magnetic resonance
imaging (MRI), currently being enrolled in other
studies, and poor general health with diseases pre-
cluding enrollment [21]. The project was approved
by the Emory University Institutional Review Board,
and informed consent was obtained from all subjects
or their authorized representatives.

There were 134 participants with MCI and 84
healthy controls (HCs) with available CSF C4 data
selected from the ADNI database. Participants with
no CSF biomarker data and those with data out-
side three standard deviations (SDs) were excluded.
To study the early phase of AD, we also excluded
demented participants. Finally, our study included
218 subjects with APOE4 genotyping, baseline mea-
surements of CSF C4 and AD core biomarkers as well
as at least one clinical follow-up assessment.
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Cognitive assessments

We obtained performance measures on five cogni-
tive tests from the ADNI, including the Mini-Mental
State Examination (MMSE) test, the Alzheimer Dis-
ease Assessment Scale (ADAS) test, the Preclinical
Alzheimer’s Cognitive Composite (PACC) test, the
Functional Assessment Questionnaire (FAQ) test,
and the Clinical Dementia Rating (CDR) test. The
PACC test can track the earliest cognitive changes
associated with underlying AD pathology [22]. The
ADAS was designed to assess the severity of cog-
nitive and non-cognitive dysfunction in AD patients
[23]. Additionally, the FAQ test is a reliable and sta-
ble measure of activities of daily living for use in
clinical or research settings [24]. The CDR is the
gold standard for the staging of dementia due to
Alzheimer’s disease [25, 26]. Notably, higher values
for the ADAS13, FAQ and CDR and lower values for
the PACC indicate poorer cognitive performance.

Measurements of CSF biomarkers

In the ADNI database, CSF samples were collected
in the morning after an overnight fast at the baseline
visit and then were frozen within 60 min once col-
lected. CSF samples were processed, aliquoted, and
stored at –80◦C according to ADNI Biomarker Core
Laboratory Standard Operating Procedures [27–29].
A�42, T-tau, and P-tau were measured by using the
Elecsys �-amyloid CSF, the Elecsys phosphotau CSF,
and Elecsys total-tau CSF immunoassays on a cobas
e601 analyzer (software version 05.02) according
to manufacturer’s provisional kit instructions [30].
A peptide sequence called GSFEFPVGDAVSK is
located in the alpha chain of C4 (MG7 domain),
mainly used for C4 quantification by the multiple-
reaction monitoring (MRM) methodology. The raw
data and all the intermediate steps are available online
at adni.loni.ucla.edu under the Biomarkers Consor-
tium CSF Proteomics MRM dataset [31].

The A/T classification

The A/T scheme, using specific cut-offs for patho-
logical levels of A� and tau isoforms, was used
to assign ADNI participants to different biomarker
groups. The A/T scheme is comprised of two groups
of biomarkers: “A” aggregated amyloid pathology (as
indicated by CSF A�42) and “T” aggregated tau (as
indicated by CSF P-tau), as previously reported [32].
And each biomarker group is binarized as either neg-

ative (−) or positive (+). “A+” participants refer to
those with CSF A�42 < 976.6 pg/ml and “T+” par-
ticipants refer to those with CSF P-tau > 21.8 pg/ml
[33]. There were then four different biomarker groups
combined, namely 1) A-T-, 2) A + T-, 3) A + T+,
and 4) A-T+ [32]. We did not apply the full A/T/N
scheme as P-tau and T-tau were highly correlated.
Furthermore, participants can be classified into the
healthy control group (A-T-), the AD continuum
group (A + T- and A + T+), and the suspected non-AD
pathology group (A-T+) [34–36].

Statistical analyses

Before the analyses, all continuous variables used
in this study were log-transformed to normalize if
the Kolmogorov-Smirnov test implied they were not
normally distributed. Baseline AD core biomarker
outliers are defined as three standard deviations (SD)
above or below the population mean. Age, sex, APOE
�4 carrier status, and education level were adjusted
as covariates in all analyses.

First, one-way analysis of covariance (ANCOVA)
was performed to determine whether CSF C4 lev-
els differed between the four A/T groups, followed
by Bonferroni-corrected post hoc pairwise compar-
isons. Next, multiple linear regression models were
performed separately in the healthy controls, the AD
continuum, and the SNAP groups to assess associ-
ations between CSF C4 and AD core biomarkers.
These analyses were performed in all participants and
then in subgroups stratified by diagnosis including the
HCs and MCI groups. Furthermore, we investigated
whether CSF C4 could be a modulator of the associ-
ation between amyloid pathology and tau pathology.
To achieve this, we conducted casual mediation anal-
yses using linear regression models fitted according
to the methods proposed by Baron and Kenny, with
CSF C4 as the mediator [37]. In this model, CSF A�42
levels were the independent variable, and CSF P-tau
levels were the dependent variable. In addition, linear
mixed effects (LME) models were used to examine
the longitudinal effects of CSF C4 on changes in
cognitive function. The LME model has a random
time intercept and slope and an unstructured random
effects covariance matrix, with time (continuous) and
dependent variable (cognitive function) interactions
as predictors. The analyses described above were
carried out using R (version 3.5.1) and IBM SPSS
Statistics 23. A two-sided p-value < 0.05 was used
for all statistical significance in this study.
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Table 1
Characteristics of participants by biomarker framework

A-T- A+T- A+T+ A-T+ p
n 53 34 99 32

Age (y) 74.75 ± 6.70 75.13 ± 6.67 74.74 ± 6.65 76.28 ± 6.68 0.707
Gender (F/M) 20/33 11/23 39/60 15/17 0.685
Education (y) 15.25 ± 2.97 15.74 ± 2.97 16.14 ± 2.97 16.47 ± 2.88 0.212
APOE �4 carriers (%) 4(7.55) 16(47.00) 65(65.66) 6(18.75) < 0.001
CSF biomarkers

A�42 1473.57 ± 591.47 656.54 ± 564.62 616.97 ± 589.08 1848.81 ± 594.75 < 0.001
Tau 198.13 ± 111.18 181.05 ± 110.46 362.73 ± 109.90 317.73 ± 109.35 < 0.001
P-Tau 17.28 ± 12.62 16.59 ± 12.59 37.1 ± 12.52 28.99 ± 12.51 < 0.001
Complement 4 25.36 ± 0.65 24.99 ± 0.65 25.28 ± 0.64 25.51 ± 0.65 0.007

Cognitive performance
CDRSB 0.35 ± 1.00 1.01 ± 1.01 1.35 ± 1.00 0.67 ± 0.99 < 0.001
ADAS13 11.04 ± 7.10 14.93 ± 7.25 18.75 ± 7.20 11.75 ± 7.13 < 0.001
MMSE 28.57 ± 1.82 27.29 ± 1.84 27.17 ± 1.82 28.47 ± 1.83 < 0.001
FAQ 0.91 ± 4.04 2.24 ± 4.10 3.71 ± 4.07 1.22 ± 4.07 < 0.001
PACC -2.22 ± 4.67 −5.12 ± 4.73 −7.47 ± 4.70 −2.26 ± 4.07 < 0.001

SNAP, Suspected non-Alzheimer disease pathology; F, female; M, male; APOE, Apolipoprotein E; CSF, cerebrospinal fluid; MMSE, Mini-
Mental State Examination; ADAS, Alzheimer’s Disease Assessment Scale; CDR, Clinical Dementia Rating; FAQ, Functional Activities
Questionnaire, PACC, Preclinical Alzheimer Cognitive Composite.

RESULTS

Baseline participants characteristics

The demographic features of each group were
shown in Table 1. Our sample of 218 participants
included 85 (39.0%) women and 133 (61.0%) men.
Among all the participants, 84 (38.5%) were cogni-
tively normal (CN) and 134 (61.5%) were diagnosed
with MCI. The total participants had an average age of
75.0 and average education of 15.9 years. There were
differences in APOE �4 carrying status, biomarkers,
and cognitive assessment results between A/T groups
(all p < 0.001). However, no differences in age, gen-
der, or level of education were observed between the
four groups.

CSF C4 levels in different biological stages of AD

To assess the associations of CSF C4 levels with
A� deposition and the downstream processes of tau
pathology and neurodegeneration, we compared C4
levels among different subgroups stratified by A/T
scheme, including A-T- group (n = 53), A + T- group
(n = 34), A + T+ group (n = 99), and A-T+group
(n = 32). As shown in Fig. 1, there were signifi-
cant differences in the level of CSF between four
biological groups (p < 0.001), and both the A-T-
(p = 0.038) and A-T+ (p = 0.005) groups have sig-
nificantly increased CSF C4 levels compared to the
A + T- group.

Fig. 1. Levels of CSF C4 in the biomarker classification. Box-
plots of CSF C4 levels in different stages based on biomarker
categories. p-values were assessed by a one-way ANCOVA, and
significant p-values after Bonferroni corrected post hoc pairwise
comparisons are marked. CSF, cerebrospinal fluid; SNAP, sus-
pected non-Alzheimer disease pathology.

Associations between CSF C4 and AD core
biomarkers in AD continuum

We used linear regression models adjusted for age,
gender, education level, and APOE �4 carrier status
to examine the associations of CSF C4 with AD core
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Fig. 2. Associations of CSF C4 with AD core biomarkers. Scatterplots show a positive correlation between C4 and AD core biomarkers in
the whole cohort. After stratification by the A/T scheme, this association was only significant in the AD continuum group (A + groups). p
values were gained via multiple linear regression adjusting for age, gender, educational level, and APOE �4 carrier status. CSF, cerebrospinal
fluid; A�42, amyloid �42; T-tau, total Tau; P-tau, phosphorylated Tau; APOE, apolipoprotein E.

biomarkers (A�42, P-tau, and T-tau). As shown in
Fig. 2, increased CSF C4 was associated with higher
levels of CSF A�42 (� = 0.284, p < 0.001), CSF P-
tau (� = 0.215, p = 0.002), and CSF T-tau (� = 0.274,
p < 0.001) in all participants. The results of the sub-
group analysis showed that the relationship between
CSF C4 and the above CSF biomarkers remained
unchanged in the MCI group. However, no signif-
icant association was found between CSF C4 and
CSF T-tau or P-tau in the HCs group (Supplemen-
tary Table 1). After stratification according to A/T
scheme, we tested the associations in three groups,
the HC group, the AD continuum group, and the
SNAP group. Higher levels of CSF C4 were still
significantly associated with CSF A�42 (� = 0.217,
p = 0.008), CSF P-tau (� = 0.309, p < 0.001), and CSF
T-tau (� = 0.349, p < 0.001) in AD continuum group,

whereas no significant associations were found in the
HC or SNAP group.

CSF C4 protein modulated the association
between Aβ pathology and tau pathology

To further test the association between C4 and AD
pathology, we used mediation analysis to explore
whether CSF C4 mediated the association between
amyloid pathology (CSF A�42) and tau pathology
(CSF P-tau). In the total population, CSF C4 was
positively associated with CSF A�42 and CSF P-tau,
while CSF A�42 showed a negative association with
CSF P-tau, as shown in Fig. 3. Additionally, media-
tion analyses showed that CSF C4 protein partially
mediated the relationship between CSF A�42 and
CSF P-tau, with a mediating proportion of 39.25%.
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Fig. 3. CSF C4 modulated the association of A� pathology with
tau pathology. Mediation models were created to investigate the
mediation effect of C4 on the association between A� pathology
and tau pathology, with CSF A�42 levels as independent variable
and CSF C4 levels as mediator and CSF P-tau levels as depen-
dent variable. CSF, cerebrospinal fluid; A�42, amyloid-�42; P-tau,
phosphorylated tau; IE, indirect effect.

Association between baseline CSF C4 levels and
longitudinal cognitive changes

We investigated whether baseline CSF C4 levels
were associated with longitudinal cognitive changes
in the whole cohort. As shown in Table 2, baseline
CSF C4 was negatively associated with ADAS13
scores (p = 0.014) but positively associated with
PACC scores (p = 0.043) during the follow-up. Fur-
thermore, CSF C4 at baseline showed no association
with longitudinal changes in MMSE, FAQ, or CDR
scores.

DISCUSSION

In the present study, we investigated the changes
of CSF C4 in different biological stages of AD
and explored the associations of CSF C4 with AD

pathologies and cognitive changes in the early phase
of AD. Our results showed that CSF C4 levels
changed dynamically during the pathological pro-
cess of AD. Moreover, our results demonstrated that
CSF C4 levels were positively associated with CSF
A�42, P-tau, and T-tau measures in all participants.
The results of subgroup analysis by diagnostic clas-
sification showed that the relationships between CSF
C4 and AD core biomarkers were consistent with
the total sample in the MCI subgroup but not HCs
subgroup. After stratification by the biological stages
of AD, the associations between CSF C4 levels and
these biomarkers were still significant in participants
within the AD continuum but not healthy control
or SNAP group. In addition, our mediation analysis
demonstrated that CSF C4 mediated the association
between CSF A�42 and CSF P-tau. Furthermore,
we showed that CSF C4 was positively associated
with cognitive performance. Altogether, the above
results suggested that C4, like other complement cas-
cade components, was associated with AD pathology,
which may affect the subsequent cognitive perfor-
mance.

The complement cascade plays a very pivotal role
in maintaining brain homeostasis. Complements are
deficient in the normal brain, but complement levels
are significantly increased in the pathological stage
of the brain [38]. There is evidence that CSF comple-
ment proteins, including CSF C3 and CSF C4, were
markedly increased in AD and colocalized into amy-
loid plaques [39–41]. The dynamic changes in CSF
C4 levels at the different pathological stages of AD
observed in our study implied that the complement
cascade was involved in the early formation of AD
pathology. Our results also showed that the A + T-
group had the significantly lower levels of CSF C4
compared to the A-T- group, which infers that the
concentration of CSF C4 might decrease with A�

Table 2
Associations of CSF C4 with longitudinal cognitive changes

Cognitive Complement Number of
Assessment Scales 4×time participants

� (95% CI) t p

MMSE 0.029 (−0.001 to 0.062) 1.87 0.067 212
ADAS13 −0.035 (−0.064 to −0.008) −2.51 0.014 211
PACC 0.028 (0.001 to 0.055) 2.05 0.043 212
FAQ −0.018 (−0.065 to 0.028) −0.75 0.453 212
CDRSB −0.032 (−0.073 to 0.008) −1.54 0.127 212

MMSE, Mini-Mental State Examination; ADAS13, Alzheimer Disease Assessment Scale 13;
PACC, Preclinical Alzheimer’s Cognitive Composite; FAQ, Functional Assessment Questionnaire;
CDR, Clinical Dementia Rating.
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concentration in the onset of AD pathology. In addi-
tion, we found that the A-T+ participants had the
highest CSF C4 levels among four groups. However,
only the difference between A-T+ group and A + T-
group was significant, suggesting that complement
cascade may also be involved in other neurodegen-
erative diseases. Our suggestion is supported by a
previous study showing that the activation of com-
plement cascade may contribute to synapse loss in
neurodegenerative diseases other than AD [10].

Consistent with previous studies, we found that
CSF C4 was significantly associated with CSF A�42.
In our further analysis, this association only existed
in A + groups, which suggested that the effect of C4
on amyloid pathology was specific in the patholog-
ical stage of AD [42–44]. Furthermore, we showed
the significant associations between CSF C4 and CSF
tau-related biomarkers (P-tau and T-tau) in total par-
ticipants, which was in line with a previous study
showing that CSF C4 levels were associated with
tau deposition as measured by tau PET [45]. After
stratification by the A/T scheme, this association was
also significant only in A + groups, suggesting that
C4 was also involved in the downstream of amy-
loid pathology in the pathological stage of AD. In
addition, the amyloid cascade hypothesis proposed
that A� deposition in the brain was the initial step in
AD pathogenesis, causing tau-immunoreactive neu-
rofibrillary tangles, neuronal loss and finally, clinical
dementia [46]. However, based on the previous lit-
erature, the role of C4 in the pathological course
of AD is less known. Our mediation analysis found
that CSF C4 mediated the association between A�
pathology and tau pathology, indicating that C4 was
a potential regulator for the progression of AD pathol-
ogy.

Additionally, the complement cascade is involved
in synapse pruning, which affects cognitive functions
[6]. Previous studies also showed that the classic
complement pathway related genes and proteins cor-
related to cognitive functions [19, 47, 48]. In line
with these studies, we found that CSF C4 levels was
associated with cognitive functions and higher CSF
C4 levels predicted better cognitive functions. This
finding suggests that C4 as a classical complement
component may protect cognitive function by mod-
ulating AD pathology, as demonstrated by previous
studies that found co-localization of C4 and amyloid
plaques, and our study found a strong association
between C4 and AD pathology, but further studies
are needed to confirm the details between C4 and
AD pathology and cognitive function [39, 41].

The underlying mechanisms of effects of C4 on
AD pathology remain unclear, several possible expla-
nations are as follows. One possibility is that C4,
a component of the complement cascade that binds
to the complement component receptor 1 (CR1),
may be involved in the classical complement path-
way, which can modulate neuroinflammation and
neuroimmune response, thereby contributing to the
clearance of AD pathology [49, 50]. Another mech-
anism is that, as shown in a genetic study, a higher
expression of C4A is associated with a higher acti-
vation of microglia, which can prevent the toxic
accumulation of A� [7, 51]. Interestingly, a simi-
lar explanation has been proposed in several reports,
where higher CSF soluble TREM2 (sTREM2), a
reported marker of microglial phagocyte activation,
is also associated with cognitive decline and reduced
AD pathology in non-demented elderly [33, 52,
53]. However, no studies exploring a possible link
between CSF C4 and sTREM2 have been identified.
The last possible mechanism is that C4 levels were
linked to the protective effect of APOE �2 for AD
[54, 55]. These mechanistic explanations for the rela-
tionship between C4 and AD pathology have yet to
be elucidated, and future studies to further elucidate
this relationship will be crucial for the develop-
ment of new treatments to halt the progress of AD
pathology.

The strengths of the current study are that it is the
first study to systematically investigate the associ-
ations between CSF C4 and AD pathology, and that
the use of biomarker classification provides the direct
information for their associations in different patho-
logical stages of AD. However, our study also has
some limitations. Firstly, the limited sample in ADNI
may limit the statistical power. Future studies aimed
at validating our findings should be carried out in
a larger-scale population. Secondly, our analysis of
the associations between C4 and AD biomarkers was
only performed at baseline, well-designed longitudi-
nal cohorts are needed to verify our findings about
the influence of C4 on AD pathologies. Thirdly, the
mediation model applied in the current observational
studies does not allow us to infer a causal relation-
ship between C4 and AD pathology and cognitive
function. Fourthly, we used CSF A�42 for amyloid
(A) in accordance with the NIA-AA research frame-
work guidelines, whereas a recent study pointed out
that A�42/A�40 and A�42/A�38 ratios in CSF had
better diagnostic accuracy than CSF A�42 for detec-
tion of brain amyloid deposition in prodromal AD
[56]. Thus, our results in this regard should be taken
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with caution. Fifthly, the C4 data used in our study
are log quantified values and are not measured con-
centrations of the original protein, so the range of
differences for this protein in this study cannot be
used as a practical clinical reference. The use of ref-
erence concentrations of CSF C4 protein in clinical
practice should be tested in a larger sample based on
its raw concentrations. Finally, the lack of available
amyloid and tau PET data prevented us from studying
the interaction between C4 and AD at a later stage of
AD pathology.

In summary, our study showed that CSF AD core
biomarkers were tightly associated with CSF C4 lev-
els at the early stage of AD, and C4 played a key role
in the effect of amyloid pathology on tau pathology.
Moreover, we also found that higher levels of CSF
C4 predicted slower longitudinal cognitive decline.
These above findings suggested that C4 could serve
as a novel therapeutic target for AD prevention and
treatment.
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